DARK ECOLOGY

Unraveling Mysteries of Bird Migration using Weather Radar and Machine Learning

Subhransu Maji University of Massachusetts, Amherst

UMassAmherst College of Information & Computer Sciences

Movie credit: Kyle Horton

April 01

Instantaneous Density and Velocity

a,

Dark Ecology Project

- Goal: AI to unlock biological information in 25-year US weather radar archive
 - Basic science
 - Conserve biodiversity, ecosystems
 - Climate change
- Challenges: big data, not previously automated

UMassAmherst

College of Information & Computer Sciences

Radar Background: Reflectivity

• Distance-height relationship

Radar Background: Radial Velocity

• Radial velocity: speed at which targets approach or depart the radar station (Doppler shift)

Removing weather contamination

Screening Rain

- Manual: most US studies until recently
- "Direct" algorithms for some radar systems
 - Dual-pol: US post 2013
 - European C-band [Dokter et al. 2011]
- ML for *whole-scan classification*
 - Images [Roy-Chowdhury et al. 2016]
 - Vertical profiles [Van-Doren and Horton, 2018]

- breakthroughs in scale of analysisbrittle (rain within 25km, 50km, 100km?)
- discards biomass that co-occurs with precipitation

Rain segmentation

- Flexible to many downstream analyses
- Spatially-explicit
- Retains biomass that co-occurs with precipitation (~19%)

MistNet: Measuring historical bird migration in the US using archived weather radar data and convolutional neural networks, Tsung-Yu Lin et al., Methods in Ecology and Evolution, August 2019

Weak Supervision

2013 Dual polarization upgrade: abundant noisy labels

Quality of Dual-Pol Thresholding Rules

Evaluation: Human Labels

Prev Index Next ID = 30; KBGM; 2012-04-15 03:10:21; elevation = 0.48

- ~3000 images (sweeps)
- Contemporary / historical
- Focused on nocturnal bird migration (spring, fall)

- zoom + - boundary + - image +

Qualitative Results

Mobile, AL, Sep 1 2007, 3:10 UTC

Qualitative Results

Binghamton, NY, Oct 1, 2014, 2:18 UTC

Range 150 km

Quantitative Results

Method	Precision	Recall	F-score
$\rho_{\rm HV} > 0.95$	90.1	93.4	91.7
$\mathrm{DR} < -15$	89.0	96.6	93.1
MistNet	99.1	96.7	97.9

Contemporary (2017)

13 million scans, 1.2 years compute time

Nightly variation

MistNet: Outlook

- Code available: <u>https://github.com/darkecology/wsrlib</u>
- Coming soon: R, Python, versions
- European version (w/ Bart Hoekstra @ Univ. Amsterdam)
- Dataset: vertical profiles of biomass for entire US radar archive (>200 million scans; >90% complete)
- Spatially-explicit analyses

Detecting and Tracking Swallow Roosts

Migration behavior of a single species

[Cheng et al., 20XX]

Approach: Detect and Track

- ImageNet pre-training is useful
- Deeper networks are better

Model	Model w/ ImageNet pretraining	
VGG-M	41.0	34.8
Shallow VGG-M	37.7	33.1

Challenge: Variable annotation styles

Noisy roost annotations lead to inaccurate evaluation

• Challenge: Roost labels are abundant (more than 60K) but very noisy: Considerable labeling variability, much of which is specific to individual users. → Inaccurate evaluation and potentially hurt training.

An EM approach for learning with noisy annotations

RGB Image GT labels Noisy labels Annotators

 $p_{\theta}(y|x)$ is the detection model.

 $p_{\beta}(\hat{y} \mid x, y, u)$ is the forward user model

 $p_{\theta,\beta}(y \mid x, \hat{y}, u)$ is the *reverse user model*. \rightarrow variational reverse user model $q_{\phi}(y \mid x, \hat{y}, u)$

Example Detections and Tracks

Error Analysis

Post processing	Swallow roost	Precipitation	Wind mills	Other roost	Misc. clutter	Unknown
Before	454	<mark>109</mark>	<mark>47</mark>	38	22	8
After	449	<mark>5</mark>	0	38	21	8

correctly detected roosts

rain, roosts of other species,
windmills

Where do the swallow roost?

Habitat: natural wetlands (e.g., cattails and phragmites) or agricultural

Widespread statistics of roost locations and habitat usage throughout a migratory season has not previously been

Roost emergence dynamics

Estimated airspeed velocity of tree swallows is 6.61 m/s (unladen)

