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Dark Ecology Project

• Goal: AI to unlock biological 
information in 25-year US 
weather radar archive
• Basic science

• Conserve biodiversity, ecosystems

• Climate change

• Challenges: big data, not 
previously automated
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Radar Background: Radial Velocity
• Radial velocity: speed at which targets approach or depart the 

radar station (Doppler shift)
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Removing weather 
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is that a fairly even blanket of migrating birds covers much of the US. Due to these complications, current 
radar ornithology techniques analyze only on the airspace immediately surrounding the radar [18, 19]. 

Radar data products and dual-polarization upgrade. Recent upgrades to the WSR-88D system pro-

vide information that is very helpful for biological analysis. Since their installation in the 1990s, WSR-88D 
radars have collected three primary data products (hereafter: legacy data). Reflectivity is a measure of 

the total cross-sectional area of objects within the pulse volume that reflect energy back to the radar. Ra-

dial velocity is the average speed at which objects in the pulse volume are approaching or departing the 
radar, which is measured using the Doppler shift of the radar signal. Spectrum width is a measure of the 

variability of radial velocity among objects within a pulse volume. From 2011 to 2013, the WSR-88D net-
work received an important upgrade to dual-polarization or “dual-pol” technology [23-25]. Dual-pol radars 

emit and measure energy separately in vertical and horizontal polarizations. The amount of horizontally 

polarized backscatter (reflected energy) depends primarily on object width, while the amount of vertically 
polarized backscatter depends primarily on object height. The relationship between backscatter in the two 

polarizations thus provides important information about the nature of objects, such as their shape (height-
to-width ratio) and uniformity within a pulse volume. This helps discriminate different types of objects 

(rain, birds, etc.) [26, 27] and holds exceptional promise for eliminating manual steps (e.g. to screen out 
precipitation) from radar ornithology workflows for WSR-88D data from 2012 onwards. Operationally, 

WSR-88D now produces three dual-pol data products—differential reflectivity, differential phase and cor-

relation coefficient [24]—in addition to the legacy data. In Section 4 we describe how dual-pol data can be 
used as training signal for deep learning models that use legacy data to accurately identify biological tar-

gets retrospectively in WRS-88D archive.  

Visual patterns in radar data. While dual-pol data is excit-
ing for the future of radar ornithology, it does not directly help 

us with better biological interpretation of over 20 years of 
historical data. A main premise of the proposed work is that 

a huge amount of information about atmospheric phenome-

na is encoded in visual patterns in radar images. Humans 
can easily detect and interpret many of these patterns, and 

computers can be trained to do so given the appropriate 
models and data. A main short-term goal is to automatically 

screen out radar data containing non-biological targets from 

radar ornithology workflows. The two most common cases 
are: (1) precipitation and (2) clutter due to anomalous propa-
gation (AP) of the radar beam through the atmosphere, both 
illustrated to the right in comparison to bird migration. Many other phenom-

ena can be identified visually by expert humans together with the potential 
addition of contextual information such as atmospheric data, land cover, 

and elevation models. These include: bird and bat roosts [13, 28, 29] (e.g. 

see composite image of swallow roosts to the right), insect hatches [30], 
convective storms and tornadoes [31, 32], radar malfunctions, sun spikes, 

and wildfire smoke plumes [33, 34]. The general problem of automatically 
identifying the diverse phenomena that appear in radar images is a great 

challenge that can benefit immensely from computer vision approaches. 

Radar ornithology. Radar ornithology had its beginnings almost with the 
advent of radar: in the latter half of World War II radar operators realized 

that early tests of radar systems were detecting flying birds [35, 36]. 

Through the mid- to late-20
th
 century, ornithologists took advantage of advances in electronic and radar 

technology to study bird migration (e.g. [37-42]) to describe the densities, directions, speeds, altitudes, 

and orientations of birds migrating at night. However, generally these studies were restricted to smaller 
spatial and temporal scales (e.g. hundreds of meters to tens of kilometers; small number of migration 

seasons). With the advent of Doppler technology and the expansion of weather surveillance radar net-

works in the US and Europe through the late 1980s and 1990s, bird movements could be studied over 
increasingly larger regions [4] and even continentally [12] if sufficient human resources could be directed 

toward image processing. The US WSR-88D system provides the single best source of information for 
radar ornithology: no other source of data exists that is as homogeneously collected, readily available and 
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• Manual: most US studies until 
recently

• “Direct” algorithms for some radar 
systems
• Dual-pol: US post 2013
• European C-band 

[Dokter et al. 2011]

• ML for whole-scan classification
• Images [Roy-Chowdhury et al. 2016]

• Vertical profiles 
[Van-Doren and Horton, 2018]

• breakthroughs in scale of analysis
• brittle (rain within 25km, 50km, 100km?)
• discards biomass that co-occurs with 

precipitation
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Rain segmentation

• Flexible to many downstream 
analyses

• Spatially-explicit 

• Retains biomass that co-occurs 
with precipitation (~19%)



— CNN for Weather Radar

precipitation

biology

background

Challenge: training data!

MistNet: Measuring historical bird migration in the US using archived weather radar data and 
convolutional neural networks, Tsung‐Yu Lin et al., Methods in Ecology and Evolution, August 2019



Weak Supervision

[Figure: Stepanian et al. Ecosphere 2016]

Legacy data

Dual-pol: 

noisy labels

2013 Dual polarization upgrade: abundant noisy labels

Training set: >200K dual-pol scans 
(focused on nocturnal migration)



Quality of Dual-Pol Thresholding Rules

Depolarization ratio: DR

[Kilambi et al., 2018]

Correlation coefficient 𝜌HV



Evaluation: Human Labels

• ~3000 images (sweeps)

• Contemporary / historical

• Focused on nocturnal bird 
migration (spring, fall)



Mobile, AL, Sep 1 2007, 3:10 UTC

Qualitative Results



Qualitative Results
Binghamton, NY, Oct 1, 2014, 2:18 UTC



Quantitative Results

Contemporary (2017)

Historical 
(2 stations 1995–2017) Preserve 95.9% 

of biomass

98.7% of what we 
keep is biology



Case Studies
13 million scans, 1.2 years compute time

Houston



Average migration:
1995–2019

28M radar scans



MistNet: Outlook

• Code available: https://github.com/darkecology/wsrlib

• Coming soon: R, Python, versions

• European version (w/ Bart Hoekstra @ Univ. Amsterdam)

• Dataset: vertical profiles of biomass for entire US radar archive  
(>200 million scans; >90% complete)

• Spatially-explicit analyses

https://github.com/darkecology/wsrlib


Detecting and Tracking Swallow Roosts

Migration behavior of a single species

[Cheng et al., 20XX]





Dover, DE, 10/2/2010@6:52AM
22

Communal 

Roosts



• ImageNet pre-training is useful

• Deeper networks are better

 Faster R-CNN for radar image Model w/ ImageNet 

pretraining

w/o ImageNet

pretraining

VGG-M 41.0 34.8

Shallow VGG-M 37.7 33.1

Approach: Detect and Track



• Challenge: Roost labels are abundant (more than 60K) but very noisy: Considerable labeling 

variability, much of which is specific to individual users. Inaccurate evaluation and potentially hurt training. 

Noisy roost annotations lead to inaccurate evaluation 

Station Size of trainset Faster RCNN

(mAP)

KDOX 902 9.1 

Challenge: Variable annotation styles



RGB Image GT labels Noisy labels Annotators

An EM approach for learning with noisy annotations



Example Detections and Tracks



Post

processing

Swallow 

roost

Precipitation Wind 

mills

Other 

roost

Misc. 

clutter

Unknown

Before 454 109 47 38 22 8

After 449 5 0 38 21 8

rain, roosts of other species, 
windmills

correctly detected roosts 

Error Analysis



Where do the swallow roost?

Oct 01-15 Oct 16-31 Nov 01-15 Nov 16-30 Dec 01-15

WaterCroplandWetland Urban Forest Shrubland Grassland Barren

Habitat: natural wetlands (e.g., cattails and phragmites) or 
agricultural

Widespread statistics of roost locations and habitat usage 
throughout a migratory season has not previously been 
documented



Estimated airspeed velocity of 
tree swallows is 6.61 m/s 
(unladen)

Roost emergence dynamics
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