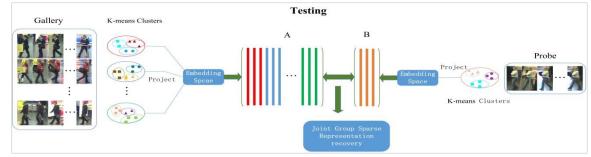
CVWC2019

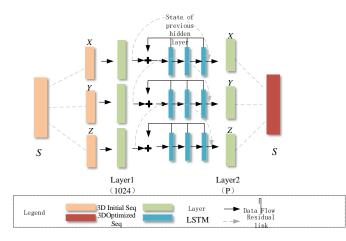
Amur Tiger Identification Challenge

Track-3&4 winner Solution

Agenda

1. Background


- 2. Summary
- 3. Model design
- 4. To do
- 5. Team Members


Background

Current research work

• person ReID

• 3D human pose estimation

Background Analysis on this competition

- Identify a tiger by its stripe
- Have a lots of Similarity with Person Re-id
- Use the loacal + globle feature
- Deal with alignment -> keypoint information

Background

Analysis on dataset

• A tiger under unconstrained illumination conditions

• A tiger with different poses

- A tiger with different degrees of occlusion
- Defferent tigers with very similar stripes

Background

Analysis on dataset

keypoints distribution 200 200 number of keypoints

Missing pose information !

Summary

Main idea

- Design model to utilize the keypoint information effectively.
- Try more backbones -> resnet50, resnet101, se-resnet101....
- End to end training with triplet loss + id loss.
- Effective use of some tricks in person Re-ID.

- Data augmentation
- Pose part construction
- Model structure

Data augmentation

- 128*256 or 256*512 cropped images as input
- Randomly do blur, grayscale, noise, rotate, crop piecewise affine

original

blur

noise

crop piecewise affine

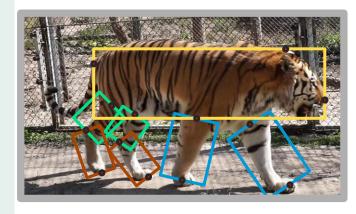
grayscale

Data augmentation

• A trick

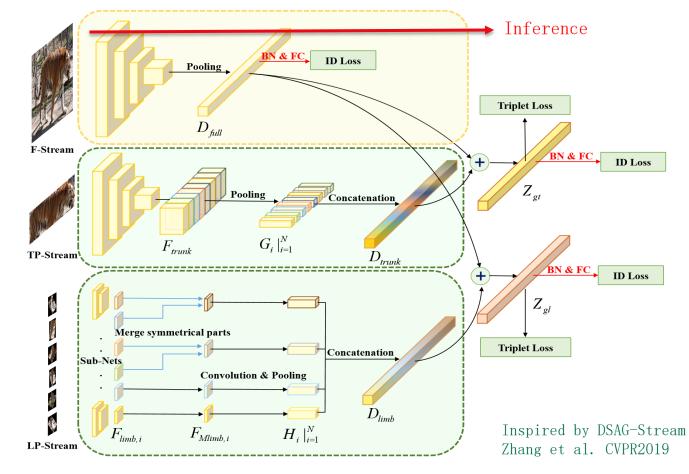
'Since the left and right side of Amur Tigers have different stripe patterns, and it is rare to capture both sides of the tiger in the wild environment, we treat different sides of the same tiger as a different entity.

Right side


new id

Left side

Pose part construction

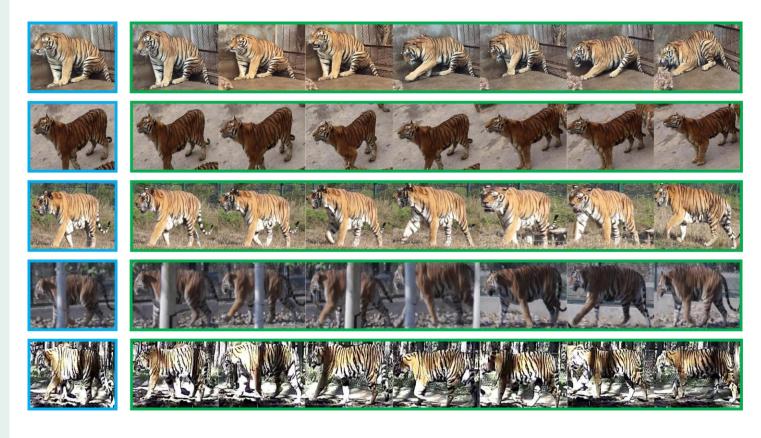


missing parts \rightarrow an rectangle in black background

Model Design Model structure: Part-Pose Guided Network

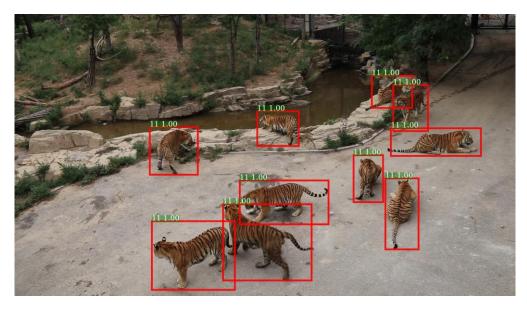
Details for implementation

- Warmup Learning Rate
- Removed the last spatial downsampling
- Cosine distance as the measure of similarity.
- Part-stream backbone: ResNet34 with 64*64
- Add Rerank


Model Design Single model performance

Plain Reid

single model	Test-dev(mmAP of Single- Cam and Cross-Cam)
se-resnet50_128x256	0.74964
se-resnet101_128x256	0.74965
se-resnext101_128x256	0.74703
resnet152_128x256	0.75686
resnet50_256x512	0.77944
resnet101_256x512	0.81216
resnet152_265x512	0.80265



Model Design Example result of Rank 1—Rank 7

Model Design Wild Reid

Detector : Faster_Rcnn-R-50 \sim 0.4600

fine model: use the Best reid model $\sim 0.8050!$

- Try more backbones
- Re-detect dataset
- Ensemble models

• Optimized detector

• Fine grained methods

Team Members

Thanks