Fine-Grained Recognition With Humans-in-the-Loop

Oisin Mac Aodha University of Edinburgh

www.oisin.info

Plummeting insect numbers 'threaten collapse of nature'

The Guardian

"Insectageddon"

https://commons.wikimedia.org/wiki/Danaus_plexippus#/media/File:Danaus_plexippus_qtl2.jpg

Review

Worldwide decline of the entomofauna: A review of its drivers

How can we automate wildlife monitoring on a global scale?

iNaturalist 2017

iNaturalist 2018

iNaturalist 2019

5,089 classes Bounding Boxes

8,142 classes Taxonomy 1,100 "hard" classes

The iNaturalist Species Classification and Detection Dataset CVPR 2018 Van Horn, Mac Aodha, Song, Cui, Sun, Shepard, Adam, Perona, Belongie

Ardea cinerea

Ardea cocoi

Training Distribution

iNaturalist 2018 – Winner's Top 1 Accuracy

⊠0 **●**0 **●** 1

Our Blog Community Guidelines

Conventional Machine Learning Pipeline

Conventional Machine Learning Pipeline

Conventional Machine Learning Pipeline

Problem: Limited number of experts.

Machine Teaching

Machine Learning vs Machine Teaching

Space of Training Sets

Zhu AAAI'15

Machine Learning vs Machine Teaching

Space of Training Sets

Zhu AAAI'15

Can we design teaching algorithms that enable humans to become better at fine-grained categorization?

Why Visual Expertise?

Poisonous?

Cancer?

Forgery?

Student/Learner

Machine Teacher

Teaching Visual Expertise

Set of images with class labels

Teaching Visual Expertise

Set of images with class labels

Teaching algorithm & student model

Teaching Visual Expertise

Set of images with class labels

Teaching algorithm & student model Sequence of teaching images

Machine Teaching Landscape

Theoretical Goldman & Kearns 1995 Zhu 2013 Chen et al. 2018

Decision Making Bak et al. 2016

. . .

. . .

Spaced Repetition Leitner 1972 Settles & Meeder 2016 Hunziker et al. 2019

Visual Categories Singla et al. 2014 Johns et al. 2015 Chen et al. 2018

...

....

Connecticut Warbler or MacGillivray's Warbler

Connecticut Warbler

or MacCillivray's Warbler

Connecticut Warbler

MacGillivray's Warbler

https://www.inaturalist.org/observations/9869215 https://www.inaturalist.org/observations/3949369

Connecticut Warbler

MacGillivray's Warbler

https://www.inaturalist.org/observations/9869215 https://www.inaturalist.org/observations/3949369

Teaching Categories to Human Learners with Visual Explanations CVPR 2018 Mac Aodha, Su, Chen, Perona, Yue, Singla

x is an image

e is an associated explanation

Butterflies

Learning Deep Features for Discriminative Localization CVPR 2016

Butterflies

Learning Deep Features for Discriminative Localization CVPR 2016

h is a hypothesis

e

How to Choose Teaching Set *T* to Teach h*?

$T = \{(x_1, y_1, e_1), ..., (x_n, y_n, e_n)\}$

Student Model

P(h|T)

Singla et al. Near-Optimally Teaching the Crowd to Classify ICML 2014

Student Model

$P(h|T) \propto P(h) \prod_{x_t, y_t \in T} S(y_t|h, x_t)$

"win stay, lose switch"

Singla et al. Near-Optimally Teaching the Crowd to Classify ICML 2014

Student Model

$$P(h|T) \propto P(h) \prod_{x_t, y_t \in T} S(y_t|h, x_t)$$

"win stay, lose switch"

$$S(y_t|h, x_t) = \begin{cases} 1 & \text{if } y_t = \hat{y}_t^h \\ \frac{1}{1 + \exp(-\alpha h(x_t)y_t)} & \text{otherwise} \end{cases}$$

Student Model - With Explanations

$P(h|T) \propto P(h) \prod_{x_t, y_t \in T} S(y_t|h, x_t)$

"Good"

"Bad"

Student Model - With Explanations

$$P(h|T) \propto P(h) \prod_{x_t, y_t \in T} S(y_t|h, x_t) \prod_{x_t, e_t \in T} (E(e_t) D(x_t))$$

"Good"

"Bad"

Selecting the Teaching Set T

Select for largest reduction in expected error

$\mathbb{E}[err(h)|T] = \sum_{h \in \mathcal{H}} P(h|T)err(h)$

Retina Images

1125 images, 3 classes

Macular Normal Subretinal Edema Fluid

1125 images, 3 classes

Macular Normal Subretinal Edema Fluid

Experimental Setup

Familiarize participants with interface Teach for 20 iterations

Test for 20 iterations (to measure performance)

Results for Retina Images

Random Image

Results for Retina Images

Results for Retina Images

Modeling Learner Memory Decay

Memory decays over time

Spaced repetition model

P_i(t | history)

Teaching Multiple Concepts to Forgetful Learners NeurIPS 2019 Hunziker, Chen, Mac Aodha, Gomez Rodriguez, Krause, Perona, Yue, Singla

Teaching Multiple Concepts to Forgetful Learners NeurIPS 2019 Hunziker, Chen, Mac Aodha, Gomez Rodriguez, Krause, Perona, Yue, Singla

Open Questions

- Models of the learning process
- Learning to teach
- Learning how low shot is performed
- Evaluation tool for interpretable machine learning
- Generating curriculums

Presence-Only Geographical Priors for Fine-Grained Image Classification ICCV 2019 Mac Aodha, Cole, Perona Can we use information such as where, when, and who captured an image to help determine its class?

Presence-Only Geographical Priors for Fine-Grained Image Classification ICCV 2019 Mac Aodha, Cole, Perona

Which class y is in image *I*?

P(y|I)

Which class y is in image I taken at location x?

$P(y|I,\mathbf{x})$

Which class y is in image I taken at location x?

Which class y is in image I taken at location x?

Previous Work

"Non-parametric"

Berg et al. CVPR 2014

Jointly Trained

Tang et al. ICCV 2015 Chu et al. Arxiv 1906.01737, 2019

x = (longitude, latitude, day)

"Presence Only" Data

Training Data photographer ID **location (+time)** $\mathcal{D} = \{ (\mathbf{x}_i, y_i, p_i) | i = 1, ..., N \}$ class label

Joint Model of Photographers and Objects

Capture the following relationships:

- class X's affinity for location Y
- photographer Z's affinity for class X
- photographer Z's affinity for location Y

Shared Embedding Space

Photographers P

Shared Embedding Space

Shared Embedding Space

Wood Thrush

Predicted Locations

Wood Thrush

Category Embedding **O**

Category Embedding **O**

Visualization of Spatio-Temporal Predictions

Embedding of Each Location on the Earth

Embedder f()

Photographer Location Affinity

Photographer Embedding P

Image Classification Results

Can our prior improve image classification performance?

latitude, day)

iNat2017 - val

iNat2018 - val

Hylocichla mustelina - Wood Thrush

Type the name of a particular species or click "random".

search rand

About

Search..

<u>Today 3-4:30pm</u> Poster #140

Friday, Nov 1st Poster #45

15:30–18:00 Poster 4.2 (Hall B)

www.vision.caltech.edu/~macaodha/projects/geopriors

Improving Fine-Grained Classifiers

More Annotations

Metadata

Activity

iggested an ID	The second secon	3d	~

Community Taxon

What's this?

Oriental Magpie (Pica serica) Cumulative IDs: 4 of 4

^

Thanks!

Elijah ColeYuxin ChenGrant Van HornYisong YueSerge BeCaltechUni. of ChicagoCornellCaltechCornell

Serge Belongie Pietro Perona Cornell Caltech

More info at www.oisin.info